-
鼓式制动器维修保养 发布日期:2022-10-18
维修 鼓式制动器常见的维修是更换制动蹄。 一些鼓式制动器的背面提供了一个检查孔,可以通过这个孔查看制动蹄上还剩下多少材料。 当摩擦材料已磨损到铆钉只剩下0.8毫米长时,应更换制动蹄。 如果摩擦材料是与后底板粘合在一起的(不是用铆钉),则当剩余的摩擦材料仅为1.6毫米厚时,应更换制动蹄。 与盘式制动器中的情况相同,制动鼓中有时会磨损出很深的划痕。 如果磨损完的制动蹄使用时间太长,将摩擦材料固定在后部的铆钉会把鼓磨出凹槽。 出现严重划痕的鼓有时可以通过重新打磨来修复。 盘式制动器具有允许厚度,而鼓式制动器具有允许直径。 由于接触面位于鼓内,因此当您从鼓式制动器中去除材料时,直径会变大。 保养 当衬块磨损时,制动蹄和鼓之间将产生更多的空间。汽车在倒车过程中停止时,会推动制动蹄,使它与鼓靠紧。 当间隙变得足够大时,调节杆会摇动足够的幅度,使调节器齿轮前进一个齿。 调节器上带有像螺栓一样的螺纹,因此它可以在转动时松开一点,并延伸以填充间隙。 每当制动蹄磨损一点时,调节器就会再前进一点,因此它总是使制动蹄与鼓保持靠近。一些汽车的调节器在使用紧急制动器时会启动。 如果紧急制动器有很长一段时间没有使用了,则调节器可能无法再进行调整。 因此,如果您的汽车装有这类调节器,一周应至少使用紧急制动器一次。
-
厂家介绍轮边制动器的安装 发布日期:2022-10-18
该制动器布置在电动机轴上,集行车制动、驻车制动和紧急制动于一体,大大简化了制动器结构和液压控制回路。该制动器由压缩弹簧提供制动力,由液压油解除制动,因此在发动机失效及液压管路故障的情况下仍能安全制动。 通过计算制动时制动器需要提供的制动力对压缩弹簧进行了传统设计计算,并用Matlab优化工具箱以制动时弹簧的长度为优化目标进行了优化,优化效果明显,显着提高了制动器的储能能力。 带有盘式轮边驻车制动器的轻型汽车后桥总成,制动装置通过制动钳支架连接在后桥壳上;制动钳的一侧安装着定摩擦块,另一侧安装有缸体,缸体上装有螺杆,螺杆的外端安装有与手制动拉杆连接的支架,两个钢珠安装盘安装在缸体内,一个与缸体固定连接,另一个与螺杆固定连接,两盘之间装有钢珠;缸体内装有活塞,活塞内腔装有与钢珠安装盘固定的螺纹导杆,调整螺套与螺纹导杆螺纹连接,调整螺套上装有压缩弹簧,调整螺套的大端面上装有推力轴承,动摩擦块与活塞固定连接。本实用新型使结构得到简化,体积缩小,簧下质量减轻,提高了行车的平稳性,热稳定性能好,无机械衰退问题,水稳定性能较好。综上所述,本实用新型使制动器的综合性能得到改善。
-
液压轮边型制动器有什么性能优势 发布日期:2022-10-18
液压轮边制动器主要作为港口、码头等露天使用的大中型起重机及港口装卸机械工作状态下的防风制动和非工作状态下的辅助防风制动;轮边制动器一般只用于被动车轮上,并进行直接制动,可有效防止被制动的车轮在风力作用下产生滚动移位。 其优势在于使用的碟簧液压缸性能优良,严格按照GB/T15622-1995设计、生产、制造;采用常闭式设计,液压站驱动施力于蝶形弹簧而释放,安全可靠;结构紧凑,造型美观;设置限位开关,进行联锁保护;无石棉摩擦片性能稳定,安装结构形式新颖独特,更换方便;制动块动作采用连杆结构,确保制动器松闸时摩擦片平面各处与车轮端面间隙均等。消除以往松闸状态摩擦片附贴制动轮现象;防腐型设计,全部紧固件和销轴为不锈钢制造。 同时,其中优质轮边制动器的动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的液压油泵,它向整个液压系统提供动力。液压油泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。
-
盘式制动器的介绍 发布日期:2022-10-18
盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,称为制动盘。摩擦元件从两侧夹紧制动盘而产生制动。固定元件则有多种结构形式,大体上可将盘式制动器分为钳盘式和全盘式两类。 盘式制动器有液压型的,由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。 盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小。
-
盘式制动器的用途介绍 发布日期:2022-10-18
盘式制动器已广泛应用于轿车,现在大部分轿车用于全部车轮,少数轿车只用作前轮制动器,与后轮的鼓式制动器配合,以使汽车有较高的制动时的方向稳定性。在商用车中,目前盘式制动器在新车型及高端车型中逐渐被采用。
-
盘式制动器的主要组成部分 发布日期:2022-10-18
1. 制动盘直径 制动盘直径D应尽可能取大些,这时制动盘的有效半径得到增加,可以降低制动钳的夹紧力,减少衬块的单位压力和工作温度。受轮辋直径的影响,制动盘的直径通常选择为轮辋直径的70%一79%。总质量大于2t的汽车应取上限。 2. 制动盘厚度 制动盘厚度对制动盘质量和工作时的温升有影响。为使质量小些,制动盘厚度不宜取得很大;为了降低温度,制动盘厚度又不宜取得过小。制动盘可以做成实心的,或者为了散热通风的需要在制动盘中间铸出通风孔道。一般实心制动盘厚度可取为10—20mm,通风式制动盘厚度取为20~50mm,采用较多的是20—30mm。在高速运动下紧急制动, 制动盘会形成热变形, 产生颤抖。为提高制动盘摩擦面的散热性能, 大多把制动盘做成中间空洞的通风式制动盘, 这样可使制动盘温度降低20 %~30%。 摩擦衬块 摩擦衬块是指钳夹活塞推动挤压在制动盘上的摩擦材料。摩擦衬块分为摩擦材料和底板,两者直接压嵌在一起。 摩擦衬块外半径只与内半径及推荐摩擦衬块外半径与内半径的比值不大于1.5。若此比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减少,会导致制动力矩变化大。 对于盘式制动器衬块工作面积A,推荐根据制动衬块单位面积占有的汽车质量在1.6~3.5(千克╱平方厘米)范围内选用。 制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。
-
钳盘式制动器的介绍 发布日期:2022-10-18
在钳盘式制动器中,由工作面积不大的摩擦块与其金属背板组成制动块。每个制动器中一般有2~4 块。这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,称为制动钳。钳盘式制动器散热能力强,热稳定性好,故广泛应用于大多数轿车和轻型货车上。 钳盘式制动器按制动钳的结构型式可分为定钳盘式和浮钳盘式两种。 定钳盘式制动器 制动盘1 固定在轮毂上,制动钳5 固定在车桥上,既不能旋转也不能沿制动盘轴向移动。制动钳内装有两个制动轮缸活塞2,分别压住制动盘两侧的制动块3。当驾驶员踩下制动踏板使汽车制动时,来自制动主缸的制动液被压入制动轮缸,制动轮缸的液压上升,两轮缸活塞在液压作用下移向制动盘,将制动块压靠到制动盘上,制动块夹紧制动盘,产生阻止车轮转动的摩擦力矩,实现制动。 浮钳盘式制动器 浮钳盘式制动器的制动钳是浮动的,可以相对于制动盘轴向移动。如图3所示为浮钳盘式制动器的结构示意图。 制动钳1一般设计成可以相对于制动盘4轴向移动。在制动盘的内侧设有液压油缸9,外侧的固定制动块5附装在钳体上。制动时,制动液被压入油缸中,在液压作用下活塞向左移动,推动活动制动块也向左移动并压靠到制动盘上,于是制动盘给活塞一个向右的反作用力,使活塞连同制动钳体整体沿导向销2向右移动,直到制动盘左侧的固定制动块5也压到制动盘上。这时两侧制动块都压在制动盘上,制动块夹紧制动盘,产生阻止车轮转动的摩擦力矩,实现制动。
-
鼓式制动器的分类与组成 发布日期:2022-10-18
按制动蹄运动方向 鼓式制动器是利用制动蹄片挤压制动鼓而获得制动力的,可分为内张式和外束式两种。内张鼓式制动器是以制动鼓的内圆柱面为工作表面,在现代汽车上广泛使用;外束鼓式制动器则是以制动鼓的外圆柱面为工作表面,目前只用作极少数汽车的驻车制动器。 按促动装置 鼓式制动器根据制动蹄张开装置(也称促动装置)形式的不同,可分为轮缸式制动器和凸轮式制动器,如图1所示。轮缸式制动器以液压制动轮缸作为制动蹄促动装置,多为液压制动系统所采用;凸轮式制动器以凸轮作为促动装置,多为气压制动系统所采用。 按制动蹄受力 轮缸式制动器按制动蹄的受力情况不同,可分为领从蹄式、双领蹄式(单向作用、双向作用)、双从蹄式、自增力式(单向作用、双向作用)等类型。 (1) 领从蹄式制动器(leading trailing shoe brake) 领从蹄式制动器的结构如图3所示。制动底板5 固定在后桥壳或前桥转向节凸缘上,在制动底板的下部装有两个偏心的调整螺钉1,两个制动蹄11、12 的下端有孔,套装在偏心调整螺钉上,并用锁止螺母3锁止。制动底板的中部装有两制动蹄托架4,以限 制制动蹄的轴向位置。制动蹄上端用回位弹簧10 拉靠在制动轮缸9 的顶块上。制动蹄的外圆面上,用埋头螺钉铆接着摩擦衬片8。作为制动蹄促动装置的制动轮缸也用螺钉固装在制动底板上。制动鼓固装在车轮轮毂的凸缘上,随车轮一起转动。 领从蹄式制动器制动效能比较稳定,结构简单可靠,便于安装,广泛用作货车的前、后轮制动器和轿车的后轮制动器。 (2) 双领蹄式制动器(two leading shoe brake) 在制动鼓正向旋转时,双领蹄式制动器的两制动蹄均为领蹄的制动器称为双领蹄制动器。 两制动蹄各用一个单活塞式制动轮缸 2 促动,且两套制动蹄、制动轮缸、支承销和调整凸轮等在制动底板上的布置是中心对称的,以代替领从蹄式制动器中的轴对称布置。等直径的两个制动轮缸可借油管连通,使其中油压相等。这样,在汽车前进时,两制动蹄均为领蹄;但在倒车时,两制动蹄均变为从蹄。由此可见,这种双领蹄式制动器具有单向作用,在前进时制动效能好,倒车时制动效能大大下降,且不便安装驻车制动器,故一般不用作后轮制动器;但两制动蹄片受力相同,磨损均匀,且制动蹄片作用于制动鼓的力量是平衡的,即单向作用双领蹄制动器属于平衡式制动器。 如果能使单向作用双领蹄制动器的两制动蹄的支承销和促动力作用点位置互换,那么在倒车制动时就可以得到与前进制动时相同的制动效果。双向作用双领蹄制动器(dual two leadingshoe brake)的设计就是基于此设想,该类制动器的制动蹄在制动鼓正、反向旋转时均为领蹄。 若将装有双领蹄制动器的汽车左、右两侧车轮制动器对调安装,便成为在制动鼓正向旋转时两制动蹄均为从蹄的双从蹄式制动器(two trailing shoe brake)。显然,双从蹄式制动器前进时制动效能低于领从蹄式制动器和双领蹄式制动器,但其制动效能对摩擦因数变化的敏感程度较小,即具有良好的制动效能稳定性,只在少数保证制动可靠性的轿车上采用。 (3) 自增力式制动器(servo brake) 自增力式制动器可分为单向自增力式(uni-servobrake)和双向自增力式(duo-servo brake)两种,在结构上只是制动轮缸中的活塞数目不同而已。单向自增力制动器只在汽车前进时起自增力作用,使用单活塞制动轮缸;双向自增力制动器在汽车前进或倒车制动时都能起自增力作用,使用双活塞制动轮缸。 自增力式制动器的增力原理是,利用可调顶杆体浮动铰接的制动蹄来代替固定的偏心销式制动蹄,利用前蹄的助势推动后蹄,使总的摩擦力矩得以增大,起到自动增力的作用。如图6所示为单向自增力制动器。第 一制动蹄1和第二制动蹄6 的上端被各自的制动蹄回位弹簧2 拉拢,并以铆于腹板上端两侧的夹板3 的内凹弧面支靠着支承销4。两制动蹄下端以凹入的平面分别浮动支承在可调顶杆体两端的直槽底面上,并用拉紧弹簧8拉紧。 所示为双向自增力制动器。制动蹄的上端两侧铆有夹板4,用前后蹄回位弹簧6 和3 将夹板拉靠在支承销上,两制动蹄的下端由拉紧弹簧9 拉靠在可调顶杆体8 两端直槽的底平面上。可调顶杆体是浮动的。制动轮缸处于支承销稍下的位置。 在基本结构参数和制动轮缸工作压力相同的条件下,自增力式制动器由于对摩擦助势作用的利用,制动效能好,但其制动效能对摩擦因数的依赖性大,因而其稳定性差;此外,在制动过程中自增力式制动器制动力矩的增长在某些情况下显得过于急速。因此,单向自增力式制动器只用于中、轻型汽车的前轮,而双向自增力式制动器由于可兼作驻车制动器而广泛用于轿车后轮。